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Gas boiler service & repair demand

• Strong causality, e.g.:
• Cold weather  use more gas  high repair demand

• Holiday  away from home  less repair demand

• 173 service patches in the UK
• Each has dependent variables, e.g. weather observations.

Number of contact : Dependent variable

Temperature : Independent variable



Linear Models
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Poisson Distribution

• Goodness-of-fit test for Poisson distribution

• Poisson GLM

𝒚𝒊 = 𝜷𝟎 + 𝒙𝒊,𝟏𝜷𝟏 + 𝒙𝒊,𝟐𝜷𝟐 +⋯+ 𝝐𝒊
Assumption:

𝑦𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆)

𝜖𝑖 ~𝑁(0, 𝜎
2)

• Response variable 𝑦𝑖 is contact count.

library(vcd)
gf <- goodfit(x)
summary(gf)
plot(gf)

> summary(gf) 
Goodness-of-fit test for poisson distribution 

X^2 df P(> X^2)
Likelihood Ratio 543.702 32 2.288901e-94



Generalised Additive Model (GAM)

• Variables may have non-
linear relationship

e.g. warm weather  low demand, 

but we don’t expect zero demand on 
extremely hot day

• GAM deals with smoothing 
splines (basis functions)
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Family: poisson
Link function: log 

Formula:
contact_priority ~ s(avg_temp)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)    

(Intercept)  2.49418    0.01109   224.9   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value    

s(avg_temp) 5.681  6.858  588.6  <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) =  0.315   Deviance explained = 31.5%
UBRE = 0.88378  Scale est. = 1         n = 694

GAM: Spline function



GLM vs GAM

myGLM <- glm(formula = contact_priority ~ avg_temp, 
data = myData, 
family = poisson())

myGAM <- gam(formula = contact_priority ~ s(avg_temp), 
data = myData, 
family = poisson())

AIC = 4260

AIC = 4263

anova(myGLM, myGAM, test="Chisq") 
Analysis of Deviance Table 

Model 1: contact_priority ~ avg_temp
Model 2: contact_priority ~ s(avg_temp) 

Resid. Df Resid. Dev Df Deviance Pr(>Chi) 
1 692.00 1307.1
2 687.32 1294.0 4.6808 13.087 0.01813 * 
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

AVOVA: 
Check reduction of sum of squared

Statistically significant



More Variables

myGAM2 <- gam(formula = contact_priority ~ te(avg_temp, avg_wind), 
data = myData, 
family = poisson())
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Family: poisson

Link function: log
Formula: contact_priority ~ te(avg_temp, avg_wind)

Parametric coefficients: 
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.4927 0.0111 224.5 <2e-16 *** 
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Approximate significance of smooth terms: 
edf Ref.df Chi.sq p-value 

te(avg_temp,avg_wind) 14.12 16.52 613.6 <2e-16 *** 
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.321 Deviance explained = 33.1%
UBRE = 0.86457 Scale est. = 1 n = 694



Results

• For each response variable 𝑦 we also know the 
standard error
• Establish confidence interval

Confidence Interval

Prediction

Actual data



Accuracy measurement

Consistent results across patches

London area:



GAM Results: Aggregated View



Accuracy measurement

• Defined as 1-MAPE  (%)
MAX(0, 1 - ABS(Forecast – Actual)/Actual)

Average accuracy of each quarter:



Potential Improvements

• Feature transformation
• Manually hand-craft linear features
• Combine and transform existing variables
• Use linear methods
• Easier to interpret

• GAM + Bagging

• Multilevel linear regression (“Mixed-effect model”)
• Service patches as groups
• Single model for all patches



Potential Improvements

• Time Series Approach
• ARMA (Auto-Regressive Moving Average) / ARIMA

• Analyse seasonality

• Other machine learning techniques
• Boosted trees

• Random Forest
• Works nicely with ordinal/categorical variables

• Neural net (RNNs)
• Substantially longer model training time

Less interpretable,
No confidence interval
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